Structural/Functional Properties of Human NFU1, an Intermediate [4Fe-4S] Carrier in Human Mitochondrial Iron-Sulfur Cluster Biogenesis

人类线粒体铁硫簇生物合成中的中间 [4Fe-4S] 载体人类 NFU1 的结构/功能特性

阅读:10
作者:Kai Cai, Gaohua Liu, Ronnie O Frederick, Rong Xiao, Gaetano T Montelione, John L Markley

Abstract

Human mitochondrial NFU1 functions in the maturation of iron-sulfur proteins, and NFU1 deficiency is associated with a fatal mitochondrial disease. We determined three-dimensional structures of the N- and C-terminal domains of human NFU1 by nuclear magnetic resonance spectroscopy and used these structures along with small-angle X-ray scattering (SAXS) data to derive structural models for full-length monomeric apo-NFU1, dimeric apo-NFU1 (an artifact of intermolecular disulfide bond formation), and holo-NFUI (the [4Fe-4S] cluster-containing form of the protein). Apo-NFU1 contains two cysteine residues in its C-terminal domain, and two apo-NFU1 subunits coordinate one [4Fe-4S] cluster to form a cluster-linked dimer. Holo-NFU1 consists of a complex of three of these dimers as shown by molecular weight estimates from SAXS and size-exclusion chromatography. The SAXS-derived structural model indicates that one N-terminal region from each of the three dimers forms a tripartite interface. The activity of the holo-NFU1 preparation was verified by demonstrating its ability to activate apo-aconitase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。