Hepatic TLR4 signaling in obese NAFLD

肥胖 NAFLD 中的肝脏 TLR4 信号传导

阅读:6
作者:Torfay Sharifnia, Joseph Antoun, Thomas G C Verriere, Giovanni Suarez, Julia Wattacheril, Keith T Wilson, Richard M Peek Jr, Naji N Abumrad, Charles R Flynn

Abstract

Nonalcoholic fatty liver disease occurs frequently in the setting of metabolic syndrome, but the factors leading to nonalcoholic steatohepatitis (NASH) are not fully understood. This study investigated Toll-like receptor 4 (TLR4) signaling in human liver with the goal of delineating whether activation of this pathway segregates those with nonalcoholic fatty liver from those with NASH. Experiments were performed using liver biopsy tissue obtained from class III obese subjects undergoing bariatric surgery, and extended to an immortalized human hepatocyte HepaRG cell line and primary human hepatocytes. The bacterial endotoxin lipopolysaccharide (LPS) and total free fatty acid levels were significantly increased in plasma of NASH patients. TLR4 mRNA levels were significantly increased in subjects with NASH compared with NAFL as was interferon regulatory factor (IRF) 3 in the myeloid differentiation factor 88-independent signaling pathway. In HepaRG cells, nuclear factor-κB (NF-κB) nuclear translocation and functional activity increased following treatment with the fatty acid, palmitate, and following exposure to LPS compared with hepatocytes stimulated with a lipogenic treatment that induced de novo lipogenesis. Palmitate and LPS induction of NF-κB activity was partially attenuated by chemical- or small-interfering RNA-mediated inhibition of TLR4. Expression of TLR4 and its downstream mediators was upregulated with palmitate and LPS. Similar results were observed using primary human hepatocytes from a lean donor. Interestingly, NF-κB activity assays showed obese donor hepatocytes were resistant to chemical TLR4 inhibition. In conclusion, TLR4 expression is upregulated in a large cohort of NASH patients, compared with those with NAFL, and this occurs within the setting of increased LPS and fatty acids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。