Molecular and computational analysis of a novel pathogenic variant in emopamil-binding protein (EBP) involved in cholesterol biosynthetic pathway causing a rare male EBP disorder with neurologic defects (MEND syndrome)

对参与胆固醇生物合成途径的埃莫帕米结合蛋白 (EBP) 中一种新型致病变异进行分子和计算分析,该变异导致一种罕见的男性 EBP 疾病和神经系统缺陷(MEND 综合征)

阅读:9
作者:Hadiba Bibi, Riaz Ahmad, Fatima Rahman, Shazia Maqbool, Muhammad Naeem, Stephanie Efthymiou, Henry Houlden

Background

Male EBP disorder with neurologic defects (MEND syndrome) is an extremely rare disorder with a prevalence of less than 1/1,000,000 individuals worldwide. It is inherited as an X-linked recessive disorder caused by impaired sterol biosynthesis due to nonmosaic hypomorphic EBP variants. MEND syndrome is characterized by variable clinical manifestations including intellectual disability, short stature, scoliosis, digital abnormalities, cataracts, and dermatologic abnormalities. The goal of this study was to investigate the disease-causing variants in a family of two patients affected with MEND syndrome.

Conclusion

Our study expands the mutation spectrum of EBP and adds to the restricted reports of MEND patients. It strengthens the body of evidence that supports the role of EBP in the MEND syndrome phenotype. To our knowledge, this is the first report of this disorder from Pakistan.

Methods

The genomic DNA of the two patients with MEND syndrome was subjected to whole exome sequencing to identify disease-causing variants. Segregation of the identified variant was tested through Sanger sequencing. Several in-silico tools were used to evaluate the pathogenicity of the variant. Protein's 3D structure analysis systems were used to predict the impact of the identified variant on the binding and function of the mutated EBP protein including AlphaFold, PyMOL, AutoDock, ChimeraX and Discovery Studio.

Results

A novel pathogenic missense EBP variant NM_006579.3:c.556T > C (Trp186Arg) was found segregating in the affected family. In-silico analysis and molecular docking results supported the pathogenicity of the identified variant.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。