Differential regulation of naïve and memory CD4+ T cells by alternatively activated dendritic cells

交替激活的树突状细胞对幼稚和记忆性 CD4+ T 细胞的差异调节

阅读:6
作者:Amy E Anderson, Bethan L Sayers, Muzlifah A Haniffa, David J Swan, Julie Diboll, Xiao-Nong Wang, John D Isaacs, Catharien M U Hilkens

Abstract

Promising immunotherapeutic tools for T cell-mediated pathologies are alternatively activated dendritic cells (aaDC), which exert their effect through the regulation and tolerization of T cells. As naïve and memory T cells have different susceptibilities to tolerogenic signals, it is important to understand the modulatory effects of aaDC on these T cell subsets. We have examined regulation of naïve and memory CD4+ T cells by human aaDC generated with dexamethasone, the active form of vitamin D3, 1alpha,25-dihydroxyvitamin D3, and LPS. Although aaDC induced low, primary, allogeneic responses by naïve and memory T cells, aaDC regulated the differentiation of these T cell subsets in a distinct manner. Naïve T cells primed by aaDC retained a strong, proliferative capacity upon restimulation but were skewed toward a low IFN-gamma/high IL-10 cytokine profile. In contrast, memory T cells primed by aaDC became hyporesponsive in terms of proliferation and cytokine production. Induction of anergy in memory T cells by aaDC was not a result of the presence of CD25hi regulatory T cells and could be partially reversed by IL-2. Both T cell subsets acquired regulatory activity and inhibited primary CD4 and CD8 responses. Addition of exogenous IL-12p70 during T cell priming by aaDC prevented anergy induction in memory T cells and cytokine polarization in naïve T cells, indicating that the lack of IL-12p70 is a key feature of aaDC. Our finding that aaDC differentially regulate naïve and memory T cells is important for understanding and maximizing the therapeutic potential of aaDC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。