Sequential modes of crosslinking tune viscoelasticity of cell-instructive hydrogels

交联的顺序模式调节细胞指导水凝胶的粘弹性

阅读:12
作者:Kyle H Vining, Alexander Stafford, David J Mooney

Abstract

Materials that can mimic the fibrillar architecture of native extracellular matrix (ECM) while allowing for independent regulation of viscoelastic properties may serve as ideal, artificial ECM (aECM) to regulate cell functions. Here we describe an interpenetrating network of click-functionalized alginate, crosslinked with a combination of ionic and covalent crosslinking, and fibrillar collagen type I. Varying the mode and magnitude of crosslinking enables tunable stiffness and viscoelasticity, while altering neither the hydrogel's microscale architecture nor diffusional transport of molecules with molecular weight relevant to typical nutrients. Further, appropriately timing sequential ionic and covalent crosslinking permits self-assembly of collagen into fibrillar structures within the network. Culture of human mesenchymal stem cells (MSCs) in this mechanically-tunable ECM system revealed that MSC expression of immunomodulatory markers is differentially impacted by the viscoelasticity and stiffness of the matrix. Together, these results describe and validate a novel material system for investigating how viscoelastic mechanical properties of ECM regulate cellular behavior.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。