An in vitro perfusion system to examine the responses of endothelial cells to simulated flow and inflammatory stimulation

体外灌注系统用于检查内皮细胞对模拟流动和炎症刺激的反应

阅读:7
作者:Natalia Y Cockcroft, Oluwatobiloba Oke, Fiona Cunningham, Emma Bishop, Ian M Fearon, Roman Zantl, Marianna D Gaça

Abstract

Atherosclerosis is a disease process which develops at the arterial branches and curvatures of medium to large arteries. Local haemodynamic flow patterns in these vessels play an essential role in the formation of atherosclerotic lesions. To simulate pro-atherogenic blood flow patterns, we have developed a perfusion system with the ability to simulate in vivo patterns of blood flow in vitro. In this system, human umbilical vein endothelial cells were seeded in y-shaped microslides, in which they were exposed to a variety of flow patterns. Besides being able to reproduce the disturbed flow involved in the development of pro-atherogenic events within the arterial wall, the system also permitted the assessment of the pre-conditioning/priming effect of oscillatory flow on endothelial cells. The system was further capable of integrating multi-endpoint assays relevant to cardiovascular disease. We show that oscillatory flow primed endothelial cells, making them more sensitive to subsequent treatments. The treatment of oscillatory flow primed cells with TNFalpha resulted in the detection of enhanced levels of pro-inflammatory and chemoattractant factors such as IL-8 and MCP-1. These measurements were facilitated by the small volumes of medium circulating within the perfusion system. Oscillatory flow also altered the characteristics of monocyte adhesion to the endothelial layer. In summary, this system allows the monitoring of multiple endpoints and biomarkers, and provides an alternative to the use of in vivo and ex vivo models of cardiovascular disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。