Dyspigmented hypertrophic scars: Beyond skin color

色素沉着增生性疤痕:超越肤色

阅读:8
作者:Abdulnaser Alkhalil, Bonnie C Carney, Taryn E Travis, Seid Muhie, Stacy Ann Miller, Jessica C Ramella-Roman, Pehman Ghassemi, Rasha Hammamieh, Marti Jett, Lauren T Moffatt, Jeffrey W Shupp

Abstract

Although pigment synthesis is well understood, relevant mechanisms of psychologically debilitating dyspigmentation in nascent tissue after cutaneous injuries are still unknown. Here, differences in genomic transcription of hyper- and hypopigmented tissue relative to uninjured skin were investigated using a red Duroc swine scar model. Transcription profiles differed based on pigmentation phenotypes with a trend of more upregulation or downregulation in hyper- or hypopigmented scars, respectively. Ingenuity Pathway Analysis of significantly modulated genes in both pigmentation phenotypes showed pathways related to redox, metabolic, and inflammatory responses were more present in hypopigmented samples, while those related to stem cell development differentiation were found mainly in hyperpigmented samples. Cell-cell and cell-extracellular matrix interactions and inflammation responses were predicted (z-score) active in hyperpigmented and inactive in hypopigmented. The proinflammatory high-mobility group box 1 pathway showed the opposite trend. Analysis of differentially regulated mutually exclusive genes showed an extensive presence of metabolic, proinflammatory, and oxidative stress pathways in hypopigmented scars, while melanin synthesis, glycosaminoglycans biosynthesis, and cell differentiation pathways were predominant in hyperpigmented scar. Several potential therapeutic gene targets have been identified.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。