Integrated conversion of 1-butanol to 1,3-butadiene

1-丁醇至1,3-丁二烯的综合转化

阅读:7
作者:Jacob S Kruger, Tao Dong, Gregg T Beckham, Mary J Biddy

Abstract

Renewed interest in production of 1,3-butadiene from non-petroleum sources has motivated research into novel production routes. In this study, we investigated an integrated process comprising 1-butanol dehydration over a γ-Al2O3 catalyst to produce a mixture of linear butenes, coupled with a downstream K-doped Cr2O3/Al2O3 catalyst to convert the butenes into butadiene. Linear butene yields greater than 90% are achievable at 360 °C in the dehydration step, and single-pass 1,3-butadiene yields greater than 40% are achieved from 1-butene in a N2 atmosphere in the dehydrogenation step. In the integrated process, 1,3-butadiene yields are 10-15%. In all cases, linear C4 selectivity is greater than 90%, suggesting that 1,3-butadiene yields could be significantly improved in a recycle reactor. Doping the Cr2O3 catalyst with different metals to promote H2 consumption in a CO2 atmosphere did not have a large effect on catalyst performance compared to an undoped Cr2O3 catalyst, although doping with K in an N2-diluted atmosphere and with Ni in a CO2-enriched atmosphere showed slight improvement. In contrast, doping with K and Ca in a CO2-enriched atmosphere showed slightly decreased performance. Similarly, employing a CO2-enriched atmosphere in general did not improve 1,3-butadiene yield or selectivity compared to reactions performed in N2. Overall, this study suggests that an integrated dehydration/dehydrogenation process to convert 1-butanol into 1,3-butadiene could be feasible with further catalyst and process development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。