Conclusions
A novel selenium alloy target enabled clinical-scale production of 76Br, 77Br, and 80mBr with high apparent molar activities, which was used to for the production of a new 77Br-labeled inhibitor of PARP-1. Advances in knowledge: New methods for the cyclotron production and isolation of radiobromine improved the production capacity of 77Br by a factor of three and 76Br by a factor of six compared with previous methods. Implications for patient care: Preclinical translational research of 77Br-based Auger electron radiotherapeutics, such as those targeting PARP-1, will require the production of GBq-scale 77Br, which necessitates next-generation, high-yielding, isotopically-enriched cyclotron targets, such as the novel intermetallic Co77Se.
Methods
76Br, 77Br, and 80mBr were produced in high radionuclidic purity via the proton irradiation of novel isotopically-enriched Co76Se, Co77Se, and Co80Se intermetallic targets, respectively. Radiobromine was isolated through thermal chromatographic distillation in a vertical furnace assembly. The 77Br-labeled PARP inhibitor was synthesized via copper-mediated aryl boronic ester radiobromination.
Results
Cyclotron production yields were 103 ± 10 MBq∙μA-1∙h-1 for 76Br, 88 ± 10 MBq∙μA-1∙h-1 for 80mBr at 16 MeV and 17 ± 1 MBq∙μA-1∙h-1 for 77Br at 13 MeV. Radiobromide isolation yields were 76 ± 11% in a small volume of aqueous solution. The synthesized 77Br-labeled PARP-1 inhibitor had a measured apparent molar activity up to 700 GBq/μmol at end of synthesis. Conclusions: A novel selenium alloy target enabled clinical-scale production of 76Br, 77Br, and 80mBr with high apparent molar activities, which was used to for the production of a new 77Br-labeled inhibitor of PARP-1. Advances in knowledge: New methods for the cyclotron production and isolation of radiobromine improved the production capacity of 77Br by a factor of three and 76Br by a factor of six compared with previous methods. Implications for patient care: Preclinical translational research of 77Br-based Auger electron radiotherapeutics, such as those targeting PARP-1, will require the production of GBq-scale 77Br, which necessitates next-generation, high-yielding, isotopically-enriched cyclotron targets, such as the novel intermetallic Co77Se.
