Fisetin exerts neuroprotective effects in vivo and in vitro by inhibiting ferroptosis and oxidative stress after traumatic brain injury

漆黄素通过抑制创伤性脑损伤后的铁死亡和氧化应激,在体内和体外发挥神经保护作用

阅读:6
作者:Haiyi Yang #, Ye Hong #, Mingjie Gong, Shihong Cai, Zhongwen Yuan, Senling Feng, Qibo Chen, Xixia Liu, Zhengrong Mei

Abstract

Traumatic brain injury (TBI) is an important cause of disability and mortality, and identifying effective neuroprotective drugs and targets after TBI is an urgent public concern. Ferroptosis, an iron dependent, novel form of cell death associated with lipid peroxidation, has recently been shown to participate in secondary injury processes after TBI. Fisetin is a natural and relatively safe at general dosages flavonoid compound with neuroprotective properties. This study aimed to investigate the molecular mechanism of ferroptosis in TBI and the role of fisetin in neuroprotection by regulating ferroptosis and oxidative stress following TBI. Through in vivo experiments, a mouse model of repetitive mild closed head injury was established to determine that fisetin could reduce post-TBI injury and exert neuroprotective effects as determined by the Neurobehavioral Severity Scale score, brain water content, Nissl staining, hematoxylin-eosin staining, TUNEL staining and water maze experiment results. Fisetin was proven to be capable of inhibiting the changes in post-TBI ferroptosis proteins, activating the PI3K/AKT/NRF2 signaling pathway, and reducing oxidative stress, as confirmed by Western blotting. Via in vitro experiments, cell death models of ferroptosis were established with glutamate and erastin. As determined by MTT assay, fisetin improved the survival of cells with induced ferroptosis. The morphological alterations of ferroptotic cells were ascertained with a microscope. Fisetin similarly inhibited the changes in multiple ferroptosis-associated proteins induced by glutamate and erastin, reduced ROS and peroxidation products, and increased the level of antioxidants. In conclusion, fisetin exerts neuroprotective effects in TBI through multiple pathways, thereby alleviating tissue damage and cognitive dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。