Enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly

通过牙釉蛋白超分子组装制造受牙釉质启发的纳米复合材料

阅读:6
作者:Yuwei Fan, Zhi Sun, Rizhi Wang, Christopher Abbott, Janet Moradian-Oldak

Abstract

Fabricating the structures similar to dental enamel through the in vitro preparation method is of great interest in the fields of dentistry and material sciences. Developing enamel is composed of calcium phosphate mineral, water, and enamel matrix proteins, mainly amelogenins. To prepare a material mimicking such composition a novel approach of simultaneously assembling amelogenin and calcium phosphate precipitates by electrolytic deposition (ELD) was established. It was found that recombinant full-length amelogenin (rP172) self-assembled into nanochain structures during ELD (following increase in solution pH), and had significant effect on the induction of the parallel bundles of calcium phosphate nanocrystals, grown on semiconductive silicon wafer surface. When a truncated amelogenin (rP148) was used; no nanochain assembly was observed, neither parallel bundles were formed. The coating obtained in the presence of rP172 had improved elastic modulus and hardness when compared to the coating incorporated with rP148. Our data suggest that the formation of organized bundles in amelogenin-apatite composites is mainly driven by amelogenin nanochain assembly and highlights the potential of such composite for future application as dental restorative materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。