Phosphoinositide 3-Kinase δ Regulates Dectin-2 Signaling and the Generation of Th2 and Th17 Immunity

磷酸肌醇 3-激酶 δ 调节 Dectin-2 信号转导以及 Th2 和 Th17 免疫的产生

阅读:4
作者:Min Jung Lee, Eri Yoshimoto, Shinobu Saijo, Yoichiro Iwakura, Xin Lin, Howard R Katz, Yoshihide Kanaoka, Nora A Barrett

Abstract

The C-type lectin receptor Dectin-2 can trigger the leukotriene C4 synthase-dependent generation of cysteinyl leukotrienes and the caspase-associated recruitment domain 9- and NF-κB-dependent generation of cytokines, such as IL-23, IL-6, and TNF-α, to promote Th2 and Th17 immunity, respectively. Dectin-2 activation also elicits the type 2 cytokine IL-33, but the mechanism by which Dectin-2 induces these diverse innate mediators is poorly understood. In this study, we identify a common upstream requirement for PI3Kδ activity for the generation of each Dectin-2-dependent mediator elicited by the house dust mite species, Dermatophagoides farinae, using both pharmacologic inhibition and small interfering RNA knockdown of PI3Kδ in bone marrow-derived dendritic cells. PI3Kδ activity depends on spleen tyrosine kinase (Syk) and regulates the activity of protein kinase Cδ, indicating that PI3Kδ is a proximal Syk-dependent signaling intermediate. Inhibition of PI3Kδ also reduces cysteinyl leukotrienes and cytokines elicited by Dectin-2 cross-linking, confirming the importance of this molecule in Dectin-2 signaling. Using an adoptive transfer model, we demonstrate that inhibition of PI3Kδ profoundly reduces the capacity of bone marrow-derived dendritic cells to sensitize recipient mice for Th2 and Th17 pulmonary inflammation in response to D. farinae Furthermore, administration of a PI3Kδ inhibitor during the sensitization of wild-type mice prevents the generation of D. farinae-induced pulmonary inflammation. These results demonstrate that PI3Kδ regulates Dectin-2 signaling and its dendritic cell function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。