In vivo attenuation and genetic evolution of a ST247-SCCmecI MRSA clone after 13 years of pathogenic bronchopulmonary colonization in a patient with cystic fibrosis: implications of the innate immune response

囊性纤维化患者支气管肺部致病定植 13 年后 ST247-SCCmecI MRSA 克隆的体内衰减和遗传进化:先天免疫反应的影响

阅读:5
作者:E López-Collazo, T Jurado, J de Dios Caballero, M Pérez-Vázquez, A Vindel, E Hernández-Jiménez, J Tamames, C Cubillos-Zapata, M Manrique, R Tobes, L Máiz, R Cantón, F Baquero, R Del Campo

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) causes chronic pulmonary infections in patients with cystic fibrosis (CF). This study tracks the 13-year evolution (1996-2009) of a single MRSA clone in a male patient with CF, evaluating both the host immunogenic response and the microbial variations. Whole-genome sequencing was performed for the initial (CF-96) and evolved (CF-09) isolates. The immunogenicity of CF-96 and CF-09 was evaluated by incubation with innate immune cells from healthy volunteers. We also studied the patient's innate immune response profile, cytokine production, expression of triggering receptor expressed on myeloid cells-1 (TREM-1), and phagocytosis. A total of 30 MRSA ST247-SCCmecI-pvl(-) isolates were collected, which evidenced a genome size reduction from the CF-96 ancestor to the evolved CF-09 strain. Up to six changes in the spa-type were observed over the course of the 13-year evolution. Cytokine production, TREM-1 expression, and phagocytosis were significantly lower for the healthy volunteer monocytes exposed to CF-09, compared with those exposed to CF-96. Patient monocytes exhibited a reduced inflammatory response when challenged with CF-09. Genetic changes in MRSA, leading to reduced immunogenicity and entry into the refractory state, may contribute to the attenuation of virulence and efficient persistence of the bacteria in the CF lung.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。