Continuous activation of polymorphonuclear myeloid-derived suppressor cells during pregnancy is critical for fetal development

妊娠期间持续激活多形核粒细胞衍生的抑制细胞对胎儿发育至关重要

阅读:6
作者:Mengyu Shi #, Ziyang Chen #, Meiqi Chen #, Jingping Liu #, Jing Li, Zhe Xing, Xiaogang Zhang, Shuaijun Lv, Xinyao Li, Shaowen Zuo, Shi Feng, Ying Lin, Gang Xiao, Liping Wang, Yumei He

Abstract

The maternal immune system is vital in maintaining immunotolerance to the semiallogeneic fetus for a successful pregnancy. Although studies have shown that myeloid-derived suppressor cells (MDSCs) play an important role in maintaining feto-maternal tolerance, little is known about the role of MDSCs in pregnancies with intrauterine growth retardation (IUGR). Here, we reported that the activation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) during pregnancy was closely associated with fetal growth. In humans, class E scavenger receptor 1 (SR-E1), a distinct marker for human PMN-MDSCs, was used to investigate PMN-MDSC function during pregnancy. Continuous activation of SR-E1+ PMN-MDSCs was observed in all stages of pregnancy, accompanied by high cellular levels of ROS and arginase-1 activity, mediated through STAT6 signaling. However, SR-E1+ PMN-MDSCs in pregnancies with IUGR showed significantly lower suppressive activity, lower arginase-1 activity and ROS levels, and decreased STAT6 phosphorylation level, which were accompanied by an increase in inflammatory factors, compared with those in normal pregnancies. Moreover, the population of SR-E1+ PMN-MDSCs was negatively correlated with the adverse outcomes of newborns from pregnancies with IUGR. In mice, decreases in cell population, suppressive activity, target expression levels, and STAT6 phosphorylation levels were also observed in the pregnancies with IUGR compared with the normal pregnancies, which were rescued by the adoptive transfer of PMN-MDSCs from pregnant mice. Interestingly, the growth-promoting factors (GPFs) secreted by placental PMN-MDSCs in both humans and mice play a vital role in fetal development. These findings collectively support that PMN-MDSCs have another new role in pregnancy, which can improve adverse neonatal outcomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。