Instructional materials that control cellular activity through synthetic Notch receptors

通过合成 Notch 受体控制细胞活动的教学材料

阅读:6
作者:Joanne C Lee, Hannah J Brien, Bonnie L Walton, Zachary M Eidman, Satoshi Toda, Wendell A Lim, Jonathan M Brunger

Abstract

The field of regenerative engineering relies primarily on the dual technical platforms of cell selection/conditioning and biomaterial fabrication to support directed cell differentiation. As the field has matured, an appreciation for the influence of biomaterials on cell behaviors has resulted in engineered matrices that meet biomechanical and biochemical demands of target pathologies. Yet, despite advances in methods to produce designer matrices, regenerative engineers remain unable to reliably orchestrate behaviors of therapeutic cells in situ. Here, we present a platform named MATRIX whereby cellular responses to biomaterials can be custom defined by combining engineered materials with cells expressing cognate synthetic biology control modules. Such privileged channels of material-to-cell communication can activate synthetic Notch receptors and govern activities as diverse as transcriptome engineering, inflammation attenuation, and pluripotent stem cell differentiation, all in response to materials decorated with otherwise bioinert ligands. Further, we show that engineered cellular behaviors are confined to programmed biomaterial surfaces, highlighting the potential to use this platform to spatially organize cellular responses to bulk, soluble factors. This integrated approach of co-engineering cells and biomaterials for orthogonal interactions opens new avenues for reproducible control of cell-based therapies and tissue replacements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。