Differential Regulation of miRNA and Protein Profiles in Human Plasma-Derived Extracellular Vesicles via Continuous Aerobic and High-Intensity Interval Training

通过持续有氧和高强度间歇训练对人类血浆来源的细胞外囊泡中的 miRNA 和蛋白质谱进行差异调节

阅读:9
作者:Zhenghao Wang, Yiran Ou, Xinyue Zhu, Ye Zhou, Xiaowei Zheng, Meixia Zhang, Sheyu Li, Shao-Nian Yang, Lisa Juntti-Berggren, Per-Olof Berggren, Xiaofeng Zheng

Abstract

Both continuous aerobic training (CAT) and high-intensity interval training (HIIT) are recommended to promote health and prevent diseases. Exercise-induced circulating extracellular vesicles (EX-EVs) have been suggested to play essential roles in mediating organ crosstalk, but corresponding molecular mechanisms remain unclear. To assess and compare the systemic effects of CAT and HIIT, five healthy male volunteers were assigned to HIIT and CAT, with a 7-day interval between sessions. Plasma EVs were collected at rest or immediately after each training section, prior to proteomics and miRNA profile analysis. We found that the differentially expressed (DE) miRNAs in EX-EVs were largely involved in the regulation of transcriptional factors, while most of the DE proteins in EX-EVs were identified as non-secreted proteins. Both CAT and HIIT play common roles in neuronal signal transduction, autophagy, and cell fate regulation. Specifically, CAT showed distinct roles in cognitive function and substrate metabolism, while HIIT was more associated with organ growth, cardiac muscle function, and insulin signaling pathways. Interestingly, the miR-379 cluster within EX-EVs was specifically regulated by HIIT, involving several biological functions, including neuroactive ligand-receptor interaction. Furthermore, EX-EVs likely originate from various tissues, including metabolic tissues, the immune system, and the nervous system. Our study provides molecular insights into the effects of CAT and HIIT, shedding light on the roles of EX-EVs in mediating organ crosstalk and health promotion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。