Electrochemical Determination of 17-β-Estradiol Using a Glassy Carbon Electrode Modified with α-Fe2O3 Nanoparticles Supported on Carbon Nanotubes

使用碳纳米管负载 α-Fe2O3 纳米粒子修饰的玻碳电极电化学测定 17-β-雌二醇

阅读:8
作者:Juliana Costa Rolim Galvão, Mayara da Silva Araujo, Maiyara Carolyne Prete, Vanildo Leão Neto, Luiz Henrique Dall'Antonia, Roberto Matos, Cesar Ricardo Texeira Tarley, Roberta Antigo Medeiros

Abstract

In this study, a novel electrochemical assay for determining 17-β-estradiol (E2) was proposed. The approach involves modifying a glassy carbon electrode (GCE) with a nanocomposite consisting of α-Fe2O3 nanoparticles supported on carbon nanotubes (CNTs)-denoted as α-Fe2O3-CNT/GCE. The synthesis of the α-Fe2O3-CNT nanocomposite was achieved through a simple and cost-effective hydrothermal process. Morphological and chemical characterization were conducted using scanning electron microscopy (SEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The presence of the α-Fe2O3-CNT film on the GCE surface resulted in an enhanced electrochemical response to E2, preventing electrode surface fouling and mitigating the decrease in peak current intensity during E2 oxidation. These outcomes substantiate the rationale behind the GCE modification. After the optimization of experimental conditions, E2 was determined by the square wave voltammetry technique using 0.1 mol L-1 KCl solution (pH = 7.0) with 20% ethanol as a supporting electrolyte. A linear concentration range of 5.0-100.0 nmol L-1 and a low limit of detection of 4.4 nmol L-1 were obtained. The electroanalytical method using α-Fe2O3-CNT/GCE was applied for E2 determination in pharmaceutical, lake water, and synthetic urine samples. The obtained results were attested by recovery tests and by high-performance liquid chromatography as a comparative technique at a 95% confidence level. Thus, the developed electrochemical sensor is simple and fast to obtain, presents high accuracy, and is viable for determining E2 in routine analysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。