Cholinergic regulatory lymphocytes re-establish neuromodulation of innate immune responses in sepsis

胆碱能调节性淋巴细胞重建脓毒症中先天免疫反应的神经调节

阅读:11
作者:Geber Peña, Bolin Cai, Laura Ramos, Gergely Vida, Edwin A Deitch, Luis Ulloa

Abstract

Many anti-inflammatory strategies that are successful in treating sepsis in healthy animals fail in clinical trials, in part because sepsis normally involves immunocompromised patients, and massive lymphocyte apoptosis prevents immunomodulation. In this article, we report a new set of regulatory lymphocytes that are able to re-establish the cholinergic anti-inflammatory modulation and to provide therapeutic advantages in sepsis. The vagus nerve controls inflammation in healthy, but not in septic, mice. Likewise, vagus nerve and cholinergic agonists fail to control inflammation in splenectomized and nude animals. Unlike typical suppressor CD25(+) cells, CD4(+)CD25(-) lymphocytes re-establish the anti-inflammatory potential of the vagus nerve and cholinergic agonists in immunocompromised and septic animals. These cholinergic lymphocytes re-establish splenic protection and the potential of cholinergic agonists to rescue immunocompromised animals from established sepsis. The study results revealed these new regulatory lymphocytes as, to our knowledge, the first known physiological target for neuromodulation of the innate immune responses and a potential therapeutic target for sepsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。