Label-free metabolic biomarkers for assessing valve interstitial cell calcific progression

用于评估瓣膜间质细胞钙化进展的无标记代谢生物标志物

阅读:5
作者:Ishita Tandon #, Olivia I Kolenc #, Delaney Cross, Isaac Vargas, Shelby Johns, Kyle P Quinn, Kartik Balachandran

Abstract

Calcific aortic valve disease (CAVD) is the most common form of valve disease where the only available treatment strategy is surgical valve replacement. Technologies for the early detection of CAVD would benefit the development of prevention, mitigation and alternate therapeutic strategies. Two-photon excited fluorescence (TPEF) microscopy is a label-free, non-destructive imaging technique that has been shown to correlate with multiple markers for cellular differentiation and phenotypic changes in cancer and wound healing. Here we show how specific TPEF markers, namely, the optical redox ratio and mitochondrial fractal dimension, correlate with structural, functional and phenotypic changes occurring in the aortic valve interstitial cells (VICs) during osteogenic differentiation. The optical redox ratio, and fractal dimension of mitochondria were assessed and correlated with gene expression and nuclear morphology of VICs. The optical redox ratio decreased for VICs during early osteogenic differentiation and correlated with biological markers for CAVD progression. Fractal dimension correlated with structural and osteogenic markers as well as measures of nuclear morphology. Our study suggests that TPEF imaging markers, specifically the optical redox ratio and mitochondrial fractal dimension, can be potentially used as a tool for assessing early CAVD progression in vitro.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。