Extravillous Trophoblast and Endothelial Cell Crosstalk Mediates Leukocyte Infiltration to the Early Remodeling Decidual Spiral Arteriole Wall

绒毛外滋养层细胞和内皮细胞串扰介导白细胞浸润到早期重塑蜕膜螺旋小动脉壁

阅读:6
作者:Ruhul H Choudhury, Caroline E Dunk, Stephen J Lye, John D Aplin, Lynda K Harris, Rebecca L Jones

Abstract

Decidual spiral arteriole (SpA) remodeling is essential to ensure optimal uteroplacental blood flow during human pregnancy, yet very little is known about the regulatory mechanisms. Uterine decidual NK (dNK) cells and macrophages infiltrate the SpAs and are proposed to initiate remodeling before colonization by extravillous trophoblasts (EVTs); however, the trigger for their infiltration is unknown. Using human first trimester placenta, decidua, primary dNK cells, and macrophages, we tested the hypothesis that EVTs activate SpA endothelial cells to secrete chemokines that have the potential to recruit maternal immune cells into SpAs. Gene array, real-time PCR, and ELISA analyses showed that treatment of endothelial cells with EVT conditioned medium significantly increased production of two chemokines, CCL14 and CXCL6. CCL14 induced chemotaxis of both dNK cells and decidual macrophages, whereas CXCL6 also induced dNK cell migration. Analysis of the decidua basalis from early pregnancy demonstrated expression of CCL14 and CXCL6 by endothelial cells in remodeling SpAs, and their cognate receptors are present in both dNK cells and macrophages. Neutralization studies identified IL-6 and CXCL8 as factors secreted by EVTs that induce endothelial cell CCL14 and CXCL6 expression. This study has identified intricate crosstalk between EVTs, SpA cells, and decidual immune cells that governs their recruitment to SpAs in the early stages of remodeling and has identified potential key candidate factors involved. This provides a new understanding of the interactions between maternal and fetal cells during early placentation and highlights novel avenues for research to understand defective SpA remodeling and consequent pregnancy pathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。