The microtubule-severing enzyme spastin regulates spindle dynamics to promote chromosome segregation in Trypanosoma brucei

微管切断酶 Spastin 调节纺锤体动力学以促进布氏锥虫的染色体分离

阅读:5
作者:Thiago Souza Onofre, Qing Zhou, Ziyin Li

Abstract

Microtubule-severing enzymes play essential roles in regulating diverse cellular processes, including mitosis and cytokinesis, by modulating microtubule dynamics. In the early branching protozoan parasite Trypanosoma brucei, microtubule-severing enzymes are involved in cytokinesis and flagellum length control during different life cycle stages, but none of them have been found to regulate mitosis in any life cycle form. Here, we report the biochemical and functional characterization of the microtubule-severing enzyme spastin in the procyclic form of T. brucei. We demonstrate that spastin catalyzes microtubule severing in vitro and ectopic overexpression of spastin disrupts spindle microtubules in vivo in trypanosome cells, leading to defective chromosome segregation. Knockdown of spastin impairs spindle integrity and disrupts chromosome alignment in metaphase and chromosome segregation in anaphase. We further show that the function of spastin requires the catalytic AAA-ATPase domain, the microtubule-binding domain, and the microtubule interacting and trafficking domain, and that the association of spastin with spindle depends on the microtubule-binding domain. Together, these results uncover an essential role for spastin in chromosome segregation by regulating spindle dynamics in this unicellular eukaryote.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。