Actuation-Mediated Compression of a Mechanoresponsive Hydrogel by Soft Robotics to Control Release of Therapeutic Proteins

通过软机器人对机械响应水凝胶进行驱动介导压缩以控制治疗性蛋白质的释放

阅读:7
作者:Eimear J Wallace, Joanne O'Dwyer, Eimear B Dolan, Liam P Burke, Robert Wylie, Gabriella Bellavia, Stefania Straino, Francesca Cianfarani, Gabriella Ciotti, Simona Serini, Gabriella Calviello, Ellen T Roche, Tapas Mitra, Garry P Duffy2

Abstract

Therapeutic proteins, the fastest growing class of pharmaceuticals, are subject to rapid proteolytic degradation in vivo, rendering them inactive. Sophisticated drug delivery systems that maintain protein stability, prolong therapeutic effects, and reduce administration frequency are urgently required. Herein, a mechanoresponsive hydrogel is developed contained within a soft robotic drug delivery (SRDD) device. In a step-change from previously reported systems, pneumatic actuation of this system releases the cationic therapeutic protein Vascular Endothelial Growth Factor (VEGF) in a bioactive form which is required for therapeutic angiogenesis, the growth of new blood vessels, in numerous clinical conditions. The ability of the SRDD device to release bioactive VEGF in a spatiotemporal manner from the hydrogel is tested in diabetic rats - a model in which angiogenesis is difficult to stimulate. Daily actuation of the SRDD device in the diabetic rat model significantly increased cluster of differentiation 31+ (CD31+) blood vessel number (p = 0.0335) and the diameter of alpha-smooth muscle actin+ (α-SMA+) blood vessels (p = 0.0025) compared to passive release of VEGF from non-actuated devices. The SRDD device combined with the mechanoresponsive hydrogel offers the potential to deliver an array of bioactive therapeutics in a spatiotemporal manner to mimic their natural release in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。