Resident vs nonresident multipotent mesenchymal stromal cell interactions with B lymphocytes result in disparate outcomes

常驻和非常驻多能间充质基质细胞与 B 淋巴细胞的相互作用导致不同的结果

阅读:6
作者:Wei Lee, Li-Tzu Wang, Men-Luh Yen, Pei-Ju Hsu, Yu-Wei Lee, Ko-Jiunn Liu, Kuo-I Lin, Yu-Wen Su, Huey-Kang Sytwu, B Linju Yen

Abstract

Multipotent human mesenchymal stromal cells (MSCs) from multiple organs including the bone marrow (BM) and placenta harbor clinically relevant immunomodulation best demonstrated toward T lymphocytes. Surprisingly, there is limited knowledge on interactions with B lymphocytes, which originate from the BM where there is a resident MSC. With increasing data demonstrating MSC tissue-specific propensities impacting therapeutic outcome, we therefore investigated the interactions of BM-MSCs-its resident and "niche" MSC-and placental MSCs (P-MSCs), another source of MSCs with well-characterized immunomodulatory properties, on the global functional outcomes of pan-peripheral B cell populations. We found that P-MSCs but not BM-MSCs significantly inhibit proliferation and further differentiation of stimulated human peripheral B populations in vitro. Moreover, although BM-MSCs preserve multiple IL-10-producing regulatory B cell (Breg) subsets, P-MSCs significantly increase all subsets. To corroborate these in vitro findings in vivo, we used a mouse model of B-cell activation and found that adoptive transfer of P-MSCs but not BM-MSCs significantly decreased activated B220+ B cells. Moreover, adoptive transfer of P-MSCs but not BM-MSCs significantly decreased the overall B220+ B-cell proliferation and further differentiation, similar to the in vitro findings. P-MSCs also increased two populations of IL-10-producing murine Bregs more strongly than BM-MSCs. Transcriptome analyses demonstrated multifactorial differences between BM- and P-MSCs in the profile of relevant factors involved in B lymphocyte proliferation and differentiation. Our results highlight the divergent outcomes of tissue-specific MSCs interactions with peripheral B cells, and demonstrate the importance of understanding tissue-specific differences to achieve more efficacious outcome with MSC therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。