Proteomic Analysis of Mesenchymal Stem Cells and Monocyte Co-Cultures Exposed to a Bioactive Silica-Based Sol-Gel Coating

暴露于生物活性二氧化硅基溶胶-凝胶涂层的间充质干细胞和单核细胞共培养物的蛋白质组学分析

阅读:7
作者:Andreia Cerqueira, Francisco Romero-Gavilán, Heike Helmholz, Mikel Azkargorta, Félix Elortza, Mariló Gurruchaga, Isabel Goñi, Regine Willumeit-Römer, Julio Suay

Abstract

New methodologies capable of extensively analyzing the cell-material interactions are necessary to improve current in vitro characterization methods, and proteomics is a viable alternative. Also, many studies are focused on monocultures, even though co-cultures model better the natural tissue. For instance, human mesenchymal stem cells (MSCs) modulate immune responses and promote bone repair through interaction with other cell types. Here, label-free liquid chromatography tandem mass spectroscopy proteomic methods were applied for the first time to characterize HUCPV (MSC) and CD14+ monocytes co-cultures exposed to a bioactive sol-gel coating (MT). PANTHER, DAVID, and STRING were employed for data integration. Fluorescence microscopy, enzyme-linked immunosorbent assay, and ALP activity were measured for further characterization. Regarding the HUCPV response, MT mainly affected cell adhesion by decreasing integrins, RHOC, and CAD13 expression. In contrast, MT augmented CD14+ cell areas and integrins, Rho family GTPases, actins, myosins, and 14-3-3 expression. Also, anti-inflammatory (APOE, LEG9, LEG3, and LEG1) and antioxidant (peroxiredoxins, GSTO1, GPX1, GSHR, CATA, and SODM) proteins were overexpressed. On co-cultures, collagens (CO5A1, CO3A1, CO6A1, CO6A2, CO1A2, CO1A1, and CO6A3), cell adhesion, and pro-inflammatory proteins were downregulated. Thus, cell adhesion appears to be mainly regulated by the material, while inflammation is impacted by both cellular cross-talk and the material. Altogether, we conclude that applied proteomic approaches show its potential in biomaterial characterization, even in complex systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。