Selective Electrocatalytic Oxidation of Biomass-Derived 5-Hydroxymethylfurfural to 2,5-Diformylfuran: from Mechanistic Investigations to Catalyst Recovery

生物质衍生的 5-羟甲基糠醛选择性电催化氧化为 2,5-二甲酰呋喃:从机理研究到催化剂回收

阅读:5
作者:Peter Kisszekelyi, Rifan Hardian, Hakkim Vovusha, Binglin Chen, Xianhai Zeng, Udo Schwingenschlögl, Jozsef Kupai, Gyorgy Szekely

Abstract

The catalytic transformation of bio-derived compounds, specifically 5-hydroxymethylfurfural (HMF), into value-added chemicals may provide sustainable alternatives to crude oil and natural gas-based products. HMF can be obtained from fructose and successfully converted to 2,5-diformylfuran (DFF) by an environmentally friendly organic electrosynthesis performed in an ElectraSyn reactor, using cost-effective and sustainable graphite (anode) and stainless-steel (cathode) electrodes in an undivided cell, eliminating the need for conventional precious metal electrodes. In this work, the electrocatalysis of HMF is performed by using green solvents such as acetonitrile, γ-valerolactone, as well as PolarClean, which is used in electrocatalysis for the first time. The reaction parameters and the synergistic effects of the TEMPO catalyst and 2,6-lutidine base are explored both experimentally and through computation modeling. The molecular design and synthesis of a size-enlarged C3 -symmetric tris-TEMPO catalyst are also performed to facilitate a sustainable reaction work-up through nanofiltration. The obtained performance is then compared with those obtained by heterogeneous TEMPO alternatives recovered by using an external magnetic field and microfiltration. Results show that this new method of electrocatalytic oxidation of HMF to DFF can be achieved with excellent selectivity, good yield, and excellent catalyst recovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。