Poly(ethylene glycol)-Based Hydrogel Microcarriers Alter Secretory Activity of Genetically Modified Mesenchymal Stromal Cells

聚乙二醇基水凝胶微载体改变转基因间充质基质细胞的分泌活性

阅读:5
作者:Gilad Doron, Levi B Wood, Robert E Guldberg, Johnna S Temenoff

Abstract

In order to scale up culture therapeutic cells, such as mesenchymal stromal cells (MSCs), culture in suspension bioreactors using microcarriers (μCs) is preferred. However, the impact of microcarrier type on the resulting MSC secretory activity has not been investigated. In this study, two poly(ethylene glycol) hydrogel formulations with different swelling ratios (named "stiffer" and "softer") were fabricated as μC substrates to culture MSCs and MSCs genetically modified to express the interleukin-1 receptor antagonist (IL-1Ra-MSCs). Changes in cell number, secretory and angiogenic activity, and changes in MAPK signaling were evaluated when cultured on hydrogel μCs, as well as on tissue culture plastic-based Synthemax μCs. We demonstrated that culture on stiffer μCs increased secretion of IL-1Ra compared to culture on Synthemax μCs by IL-1Ra-MSCs by 1.2- to 1.6-fold, as well as their in vitro angiogenic activity, compared to culture on Synthemax μCs, while culture on both stiffer and softer μCs altered the secretion of several other factors compared to culture on Synthemax μCs. Changes in angiogenic activity corresponded with increased gene expression and secretion of hepatocyte growth factor by MSCs cultured on softer μCs by 2.5- to 6-fold compared to MSCs cultured on Synthemax μCs. Quantification of phosphoprotein signaling with the MAPK pathway revealed broad reduction of pathway activation by IL-1Ra-MSCs cultured on both stiffer and softer μCs compared to Synthemax, where phosphorylated c-Jun, ATF2, and MEK1 were reduced specifically on softer μCs. Overall, this study showed that μC surfaces can influence the secretory activity of genetically modified MSCs and identified associated changes in MAPK pathway signaling, which is a known central regulator of cytokine secretion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。