Dose-Dependent Physiological and Transcriptomic Responses of Lettuce (Lactuca sativa L.) to Copper Oxide Nanoparticles-Insights into the Phytotoxicity Mechanisms

莴苣 (Lactuca sativa L.) 对氧化铜纳米粒子的剂量依赖性生理和转录组反应 - 深入了解植物毒性机制

阅读:10
作者:Tiantian Xiong, Shasha Zhang, Zhuangzhuang Kang, Ting Zhang, Shaoshan Li

Abstract

Understanding the complex mechanisms involved in plant response to nanoparticles (NPs) is indispensable in assessing the environmental impact of nano-pollutants. Plant leaves can directly intercept or absorb NPs deposited on their surface; however, the toxicity mechanisms of NPs to plant leaves are unclear. In this study, lettuce leaves were exposed to copper oxide nanoparticles (CuO-NPs, 0, 100, and 1000 mg/L) for 15 days, then physiological tests and transcriptomic analyses were conducted to evaluate the negative impacts of CuO-NPs. Both physiological and transcriptomic results demonstrated that CuO-NPs adversely affected plant growth, photosynthesis, and enhanced reactive oxygen species (ROS) accumulation and antioxidant system activity. The comparative transcriptome analysis showed that 2270 and 4264 genes were differentially expressed upon exposure to 100 and 1000 mg/L CuO-NPs. Gene expression analysis suggested the ATP-binding cassette (ABC) transporter family, heavy metal-associated isoprenylated plant proteins (HIPPs), endocytosis, and other metal ion binding proteins or channels play significant roles in CuO-NP accumulation by plant leaves. Furthermore, the variation in antioxidant enzyme transcript levels (POD1, MDAR4, APX2, FSDs), flavonoid content, cell wall structure and components, and hormone (auxin) could be essential in regulating CuO-NPs-induced stress. These findings could help understand the toxicity mechanisms of metal NPs on crops, especially NPs resulting from foliar exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。