Thermodynamic and Dynamic Transitions and Interaction Aspects in Reorientation Dynamics of Molecular Probe in Organic Compounds: A Series of 1-alkanols with TEMPO

有机化合物中分子探针重取向动力学的热力学和动态转变及相互作用方面:一系列具有 TEMPO 的 1-烷醇

阅读:6
作者:Josef Bartoš, Helena Švajdlenková

Abstract

The spectral and dynamic properties of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) in a series of 1-alkanols ranging from methanol to 1-decanol over a temperature range 100-300 K were investigated by electron spin resonance (ESR). The main characteristic ESR temperatures connected with slow to fast motion regime transition; T50G 's and TX1fast 's are situated above the corresponding glass temperatures, Tg, and for the shorter members, the T50G 's lie above or close to melting point, Tm, while the longer ones the T50G < Tm relationship indicates that the TEMPO molecules are in the local disordered regions of the crystalline media. The T50G 's and especially TX1fast 's are compared with the dynamic crossover temperatures, TXVISC = 8.72M0.66, as obtained by fitting the viscosity data in the liquid n-alkanols with the empirical power law. In particular, for NC > 6, the TX1fast 's lie rather close to the TXVISC resembling apolar n-alkanes [PCCP 2018,20,11145-11151], while for NC < 6, they are situated in the vicinity of Tm. The absence of a coincidence for lower1-alkanols indicates that the T50G is significantly influenced by the mutual interaction between the polar TEMPO and the protic polar medium due to the increased polarity and proticity destroyed by the larger-scale melting transition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。