Role of the Drying Technique on the Low-Acyl Gellan Gum Gel Structure: Molecular and Macroscopic Investigations

干燥技术对低酰基结冷胶凝胶结构的影响:分子和宏观研究

阅读:8
作者:Mattia Cassanelli, Valentina Prosapio, Ian Norton, Thomas Mills

Abstract

The effect of three drying processes (freeze, oven and supercritical CO2 drying) on CP Kelco low-acyl gellan gum gel was investigated, highlighting the role of the water removal mechanism (i.e. sublimation, evaporation and solvent replacement/extraction) and the process parameters on the gel structure, rather than focusing on the drying kinetics. It is the first time that a research paper not only compares the drying methods but also discusses and investigates how the molecular and macroscopic levels of gellan gum are affected during drying. Specifically, the dried gel structures were characterised by bulk density and shrinkage analyses as well as scanning electron microscope (SEM) and micro-computed tomography (μCT) microscopy. Micro-differential scanning calorimetry (μDSC) was used in a novel way to investigate the effect of the drying technique on the polymer disorder chains by partial melting of the gel. The resulting water uptake during rehydration was influenced by the obtained dried structure and, therefore, by the employed drying process. It was found that freeze-dried (FD) structures had a fast rehydration rate, while both oven-dried (OD) and supercritical CO2-dried (scCO2D) structures were slower. After 30 min, FD samples achieved a normalised moisture content (NMC) around 0.83, whereas OD and scCO2D samples around 0.33 and 0.19, respectively. In this context, depending on the role of the specific hydrocolloid in food (i.e. gelling agent, thickener, carrier), one particular dried-gel structure could be more appropriate than another. Graphical abstractFrom left to right: unprocessed hydrogels; μ-CT images of dried gels and unprocessed hydrogel; DSC curves after drying process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。