L-arginine-dependent suppression of apoptosis in Trypanosoma cruzi: contribution of the nitric oxide and polyamine pathways

L-精氨酸依赖性抑制克氏锥虫细胞凋亡:一氧化氮和多胺途径的贡献

阅读:8
作者:L Piacenza, G Peluffo, R Radi

Abstract

Until recently, a capacity for apoptosis and synthesis of nitric oxide *NO) were viewed as exclusive to multicellular organisms. The existence of these processes in unicellular parasites was recently described, with their biological significance remaining to be elucidated. We have evaluated L-arginine metabolism in Trypanosoma cruzi in the context of human serum-induced apoptotic death. Apoptosis was evidenced by the induction of DNA fragmentation and the inhibition of [3H]thymidine incorporation, which were inhibited by the caspase inhibitor Ac-Asp-Glu-Val-aspartic acid aldehyde (DEVD-CHO). In T. cruzi exposed to death stimuli, supplementation with L-arginine inhibited DNA fragmentation, restored [3H]thymidine incorporation, and augmented parasite *NO production. These effects were inhibited by the *NO synthase inhibitor N(omega)-nitroarginine methyl ester (L-NAME). Exogenous *NO limited DNA fragmentation but did not restore proliferation rates. Because L-arginine is also a substrate for arginine decarboxylase (ADC), and its product agmatine is a precursor for polyamine synthesis, we evaluated the contribution of polyamines to limiting apoptosis. Addition of agmatine, putrescine, and the polyamines spermine and spermidine to T. cruzi sustained parasite proliferation and inhibited DNA fragmentation. Also, the ADC inhibitor difluoromethylarginine inhibited L-arginine-dependent restoration of parasite replication rates, while the protection from DNA fragmentation persisted. In aggregate, these results indicate that T. cruzi epimastigotes can undergo programmed cell death that can be inhibited by L-arginine by means of (i) a *NO synthase-dependent *NO production that suppresses apoptosis and (ii) an ADC-dependent production of polyamines that support parasite proliferation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。