Effect on Intermittent Hypoxia on Plasma Exosomal Micro RNA Signature and Endothelial Function in Healthy Adults

间歇性缺氧对健康成人血浆外泌体微小RNA特征和内皮功能的影响

阅读:10
作者:Abdelnaby Khalyfa, Chunling Zhang, Ahamed A Khalyfa, Glen E Foster, Andrew E Beaudin, Jorge Andrade, Patrick J Hanly, Marc J Poulin, David Gozal

Conclusions

In humans, intermittent hypoxia alters exosome cargo in the circulation which promotes increased permeability and dysfunction of endothelial cells in vitro. A select number of circulating exosomal miRNAs may play important roles in the cardiovascular dysfunction associated with OSA by targeting specific effector pathways.

Methods

Ten male volunteers were exposed to room air (D0), IH (6 h/day) for 4 days (D4) and allowed to recover for 4 days (D8). Circulating plasma exosomes were isolated and incubated with human endothelial monolayer cultures for impedance measurements and RNA extracted and processed with messenger RNA (mRNA) arrays to identify gene targets. In addition, immunofluorescent assessments of endothelial nitric oxide synthase (eNOS) mRNA expression, ICAM-1 cellular distribution were conducted.

Objective

Intermittent hypoxia (IH) is associated with increased risk of cardiovascular disease. Exosomes are secreted by most cell types and released in biological fluids, including plasma, and play a role in modifying the functional phenotype of target cells. Using an experimental human model of IH, we investigated potential exosome-derived biomarkers of IH-induced vascular dysfunction.

Results

Plasma exosomal micro RNAs (miRNAs) were profiled. D4 exosomes, primarily from endothelial sources, disrupted impedance levels compared to D0 and D8. ICAM-1 expression was markedly upregulated in endothelial cells exposed to D4 exosomes along with significant reductions in eNOS expression. Microarray approaches identified a restricted and further validated signature of exosomal miRNAs in D4 exosomes, and mRNA arrays revealed putative endothelial gene target pathways. Conclusions: In humans, intermittent hypoxia alters exosome cargo in the circulation which promotes increased permeability and dysfunction of endothelial cells in vitro. A select number of circulating exosomal miRNAs may play important roles in the cardiovascular dysfunction associated with OSA by targeting specific effector pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。