Frontline Science: Escherichia coli use LPS as decoy to impair neutrophil chemotaxis and defeat antimicrobial host defense

前沿科学:大肠杆菌利用 LPS 作为诱饵来削弱中性粒细胞趋化性并击败抗菌宿主防御

阅读:6
作者:Yutaka Kondo, Carola Ledderose, Christian J Slubowski, Mahtab Fakhari, Yuka Sumi, Koichiro Sueyoshi, Ann-Katrin Bezler, Dilan Aytan, Mona Arbab, Wolfgang G Junger

Abstract

Bacterial infections and sepsis are leading causes of morbidity and mortality in critically ill patients. Currently, there are no effective treatments available to improve clinical outcome in sepsis. Here, we elucidated a mechanism by which Escherichia coli (E. coli) bacteria impair neutrophil (PMN) chemotaxis and we studied whether this mechanism can be therapeutically targeted to improve chemotaxis and antimicrobial host defense. PMNs detect bacteria with formyl peptide receptors (FPR). FPR stimulation triggers mitochondrial ATP production and release. Autocrine stimulation of purinergic receptors exerts excitatory and inhibitory downstream signals that induce cell polarization and cell shape changes needed for chemotaxis. Here we show that the bacterial cell wall product LPS dose-dependently impairs PMN chemotaxis. Exposure of human PMNs to LPS triggered excessive mitochondrial ATP production and disorganized intracellular trafficking of mitochondria, resulting in global ATP release that disrupted purinergic signaling, cell polarization, and chemotaxis. In mice infected i.p. with E. coli, LPS treatment increased the spread of bacteria at the infection site and throughout the systemic circulation. Removal of excessive systemic ATP with apyrase improved chemotaxis of LPS-treated human PMNs in vitro and enhanced the clearance of E. coli in infected and LPS-treated mice. We conclude that systemic ATP accumulation in response to LPS is a potential therapeutic target to restore PMN chemotaxis and to boost the antimicrobial host immune defense in sepsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。