Chaihu Shugan powder restores fatty acid synthesis to alleviate insulin resistance in metabolic syndrome by regulating the LXRα/SREBP-1 signaling pathway

柴胡疏肝散通过调控LXRα/SREBP-1信号通路恢复脂肪酸合成缓解代谢综合征胰岛素抵抗

阅读:5
作者:Sisi Lei #, Weihang Peng #, Lulu Wu #, Liyuan Yu, Meida Wang, Qingmin Li, Yi Deng, Shuai Zhao, Peiying Huang, Bojun Chen

Background

Metabolic syndrome (MS) is a significant risk factor for cardiovascular and cerebrovascular diseases, primarily driven by insulin resistance (IR). Although the herbal compound Chaihu Shugan powder (CSP) has demonstrated the potential to improve IR in animal models of MS, its mechanism of action remains incompletely understood. Therefore, this study aimed to investigate the biological pathways through which CSP exerts its therapeutic effects on IR in MS using both in vitro and in vivo

Conclusion

The CSP ameliorated IR in MS by restoring fatty acid metabolism through the regulation of the LXRα/SREBP-1 signaling pathway.

Methods

The primary metabolites of CSP aqueous extract and CSP-containing serum were measured by LC-MS/MS. A mouse model of MS-related IR was induced by a high-fat, high-fructose diet combined with chronic immobilization stress. The CSP's therapeutic potential was evaluated through glucose and insulin tolerance tests and hepatic insulin signaling molecules (p-IRS-1, IRS-1, p-Akt, and Akt). The expression of lipid metabolism-related factors (FFA, DAG, LXRα, SREBP-1, FASN, and ACC) in the liver was also measured. Hepatocyte IR was modeled using high-glucose and high-insulin conditions, and CSP impact was evaluated using 2-NBDG uptake and insulin signaling molecule expression. The specific mechanism of CSP was explored using the LXRα agonist T0901317.

Results

The MS-related IR model exhibited a decreased p-Akt/Akt ratio and increased fasting glucose, insulin, homeostatic model assessment of IR, and hepatic lipid metabolism factors. Treatment with CSP mitigated these effects. In the hepatocyte IR model, CSP-containing serum improved glucose uptake and modulated the expression of insulin signaling and lipid metabolism factors. Furthermore, T0901317 reversed the beneficial effects of CSP, indicating the role of LXRα in CSP's therapeutic action.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。