Alpha v beta3 integrin spatially regulates VASP and RIAM to control adhesion dynamics and migration

Alpha v beta3 整合素在空间上调节 VASP 和 RIAM,以控制粘附动力学和迁移

阅读:6
作者:Daniel C Worth, Kairbaan Hodivala-Dilke, Stephen D Robinson, Samantha J King, Penny E Morton, Frank B Gertler, Martin J Humphries, Maddy Parsons

Abstract

Integrins are fundamental to the control of protrusion and motility in adherent cells. However, the mechanisms by which specific members of this receptor family cooperate in signaling to cytoskeletal and adhesion dynamics are poorly understood. Here, we show that the loss of beta3 integrin in fibroblasts results in enhanced focal adhesion turnover and migration speed but impaired directional motility on both 2D and 3D matrices. These motility defects are coupled with an increased rate of actin-based protrusion. Analysis of downstream signaling events reveals that loss of beta3 integrin results in a loss of protein kinase A-dependent phosphorylation of the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP). Dephosphorylated VASP in beta3-null cells is preferentially associated with Rap1-GTP-interacting adaptor molecule (RIAM) both in vitro and in vivo, which leads to enhanced formation of a VASP-RIAM complex at focal adhesions and subsequent increased binding of talin to beta1 integrin. These data demonstrate a novel mechanism by which alphavbeta3 integrin acts to locally suppress beta1 integrin activation and regulate protrusion, adhesion dynamics, and persistent migration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。