DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features

DAP12/TREM2 缺乏导致破骨细胞分化受损和骨质疏松特征

阅读:5
作者:Juha Paloneva, Jami Mandelin, Anna Kiialainen, Tom Bohling, Johannes Prudlo, Panu Hakola, Matti Haltia, Yrjo T Konttinen, Leena Peltonen

Abstract

Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL), Nasu-Hakola disease, is a globally distributed recessively inherited disease. PLOSL is characterized by cystic bone lesions, osteoporotic features, and loss of white matter in the brain leading to spontaneous bone fractures and profound presenile dementia. We have earlier characterized the molecular genetic background of PLOSL by identifying mutations in two genes, DAP12 and TREM2. DAP12 is a transmembrane adaptor protein that associates with the cell surface receptor TREM2. The DAP12-TREM2 complex is involved in the maturation of dendritic cells. To test a hypothesis that osteoclasts would be the cell type responsible for the bone pathogenesis in PLOSL, we analyzed the differentiation of peripheral blood mononuclear cells isolated from DAP12- and TREM2-deficient PLOSL patients into osteoclasts. Here we show that loss of function mutations in DAP12 and TREM2 result in an inefficient and delayed differentiation of osteoclasts with a remarkably reduced bone resorption capability in vitro. These results indicate an important role for DAP12-TREM2 signaling complex in the differentiation and function of osteoclasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。