Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling

食草动物诱导的紫花苜蓿萜类化合物的释放:茉莉酸、乙烯和钙信号的协同作用

阅读:5
作者:Gen-ichiro Arimura, Stefan Garms, Massimo Maffei, Simone Bossi, Birgit Schulze, Margit Leitner, Axel Mithöfer, Wilhelm Boland

Abstract

Plant volatiles emitted by Medicago truncatula in response to feeding larvae of Spodoptera exigua are composed of a complex blend of terpenoids. The cDNAs of three terpene synthases (TPSs), which contribute to the blend of terpenoids, were cloned from M. truncatula. Their functional characterization proved MtTPS1 to be a beta-caryophyllene synthase and MtTPS5 to be a multi-product sesquiterpene synthase. MtTPS3 encodes a bifunctional enzyme producing (E)-nerolidol and geranyllinalool (precursors of C11 and C16 homoterpenes) from different prenyl diphosphates serving as substrates. The addition of jasmonic acid (JA) induced expression of the TPS genes, but terpenoid emission was higher from plants treated with JA and the ethylene precursor 1-amino-cyclopropyl-1-carboxylic acid. Compared to infested wild-type M. truncatula plants, lower amounts of various sesquiterpenes and a C11-homoterpene were released from an ethylene-insensitive mutant skl. This difference coincided with lower transcript levels of MtTPS5 and of 1-deoxy-D: -xylulose-5-phosphate synthase (MtDXS2) in the damaged skl leaves. Moreover, ethephon, an ethylene-releasing compound, modified the extent and mode of the herbivore-stimulated Ca2+ variations in the cytoplasm that is necessary for both JA and terpene biosynthesis. Thus, ethylene contributes to the herbivory-induced terpenoid biosynthesis at least twice: by modulating both early signaling events such as cytoplasmic Ca2+-influx and the downstream JA-dependent biosynthesis of terpenoids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。