Dnmt3a-dependent de novo DNA methylation enforces lineage commitment and preserves functionality of memory Th1 and Tfh cells

Dnmt3a 依赖的从头 DNA 甲基化增强谱系承诺并保留记忆 Th1 和 Tfh 细胞的功能

阅读:5
作者:Bryant Perkins, Camille L Novis, Andrew Baessler, Linda M Sircy, Monyca M Thomas, Malia Harrison-Chau, Andrew W Richens, Bryce Fuchs, Nguyen X Nguyen, Kaitlyn Flint, Brittany M Strobelt, Katherine E Varley, J Scott Hale

Abstract

Following acute viral infection, naïve CD4+ T cells differentiate into T follicular helper (Tfh) and T helper 1 (Th1) cells that generate long-lived memory cells. However, it is unclear how memory Tfh and Th1 cells maintain their lineage commitment. We demonstrate that Tfh and Th1 lineages acquire distinct Dnmt3a-dependent de novo DNA methylation programs that are preserved into memory. Dnmt3a deletion impairs lineage commitment and functionality of memory Th1 and Tfh cells, resulting in aberrant Runx1 upregulation that represses germinal center Tfh cell differentiation. In contrast, transient pharmacological DNA methyltransferase inhibition during priming impairs repression of Tfh-associated genes while properly silencing Runx1, and results in enhanced Tfh cell functionality in primary and secondary responses to viral infections. Together, these findings demonstrate that Dnmt3a-mediated epigenetic programing is required to enforce T helper lineage commitment and preserve Tfh and Th1-specific functions during the recall response to infection, and reveal novel strategies to improve long-lived adaptive immunity against infectious diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。