Developmental origins of transgenerational sperm histone retention following ancestral exposures

祖先暴露后跨代精子组蛋白保留的发育起源

阅读:7
作者:Millissia Ben Maamar, Daniel Beck, Eric Nilsson, John R McCarrey, Michael K Skinner

Abstract

Numerous environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. Alterations in the germline epigenome are necessary to transmit transgenerational phenotypes. In previous studies, the pesticide DDT (dichlorodiphenyltrichloroethane) and the agricultural fungicide vinclozolin were shown to promote the transgenerational inheritance of sperm differential DNA methylation regions, non-coding RNAs and histone retention, which are termed epimutations. These epimutations are able to mediate this epigenetic inheritance of disease and phenotypic variation. The current study was designed to investigate the developmental origins of the transgenerational differential histone retention sites (called DHRs) during gametogenesis of the sperm. Vinclozolin and DDT were independently used to promote the epigenetic transgenerational inheritance of these DHRs. Male control lineage, DDT lineage and vinclozolin lineage F3 generation rats were used to isolate round spermatids, caput epididymal spermatozoa, and caudal sperm. The DHRs distinguishing the control versus DDT lineage or vinclozolin lineage samples were determined at these three developmental stages. DHRs and a reproducible core of histone H3 retention sites were observed using an H3 chromatin immunoprecipitation-sequencing (ChIP-Seq) analysis in each of the germ cell populations. The chromosomal locations and genomic features of the DHRs were analyzed. A cascade of epigenetic histone retention site alterations was found to be initiated in the round spermatids and then further modified during epididymal sperm maturation. Observations show that in addition to alterations in sperm DNA methylation and ncRNA expression previously identified, the induction of differential histone retention sites (DHRs) in the later stages of spermatogenesis also occurs. This novel component of epigenetic programming during spermatogenesis can be environmentally altered and transmitted to subsequent generations through epigenetic transgenerational inheritance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。