In Vitro Analysis of AKR1D1 Interactions with Clopidogrel: Effects on Enzyme Activity and Gene Expression

AKR1D1 与氯吡格雷相互作用的体外分析:对酶活性和基因表达的影响

阅读:8
作者:K Shutevska, Panovska T Kadifkova, Z Zhivikj, Nestorovska A Kapedanovska

Abstract

Clopidogrel, a P2Y12 receptor antagonist, is widely used to prevent cardiovascular events, but significant variability in its efficacy persists among patients. AKR1D1, involved in bile acid synthesis and regulation of CYP enzymes, may contribute to this variability. This study aims to investigate whether clopidogrel and its inactive metabolite, 2-oxoclopidogrel, interact with AKR1D1 at the enzymatic or transcriptional level. Enzymatic activity assays demonstrated that neither clopidogrel nor 2-oxoclopidogrel acts as a substrate or inhibitor of AKR1D1. Expression studies in HepG2 cells further revealed no significant changes in AKR1D1 mRNA levels following treatment with these compounds. These findings indicate that clopidogrel does not directly influence AKR1D1's metabolic functions, including bile acid synthesis, steroid hormone clearance, or the production of 5β-reduced steroids, which regulate CYP enzyme expression. From a physiological perspective, the absence of interaction minimizes the risk of adverse effects on CYP-mediated drug metabolism, nutrient absorption, lipid digestion, and the absorption of lipophilic drugs. Future research should explore AKR1D1's broader substrate specificity, particularly focusing on non-steroidal compounds, and investigate the clinical implications of AKR1D1 polymorphisms in clopidogrel-treated patients to enhance personalized therapeutic strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。