Cross-Resistance Among Next-Generation Antiandrogen Drugs Through the AKR1C3/AR-V7 Axis in Advanced Prostate Cancer

晚期前列腺癌中下一代抗雄激素药物通过 AKR1C3/AR-V7 轴的交叉耐药性

阅读:6
作者:Jinge Zhao, Shu Ning, Wei Lou, Joy C Yang, Cameron M Armstrong, Alan P Lombard, Leandro S D'Abronzo, Christopher P Evans, Allen C Gao, Chengfei Liu

Abstract

The next-generation antiandrogen drugs, XTANDI (enzalutamide), ZYTIGA (abiraterone acetate), ERLEADA (apalutamide) and NUBEQA (darolutamide) extend survival times and improve quality of life in patients with advanced prostate cancer. Despite these advances, resistance occurs frequently and there is currently no definitive cure for castration-resistant prostate cancer. Our previous studies identified that similar mechanisms of resistance to enzalutamide or abiraterone occur following treatment and cross-resistance exists between these therapies in advanced prostate cancer. Here, we show that enzalutamide- and abiraterone-resistant prostate cancer cells are further cross-resistant to apalutamide and darolutamide. Mechanistically, we have determined that the AKR1C3/AR-V7 axis confers this cross-resistance. Knockdown of AR-V7 in enzalutamide-resistant cells resensitize cells to apalutamide and darolutamide treatment. Furthermore, targeting AKR1C3 resensitizes resistant cells to apalutamide and darolutamide treatment through AR-V7 inhibition. Chronic apalutamide treatment in C4-2B cells activates the steroid hormone biosynthesis pathway and increases AKR1C3 expression, which confers resistance to enzalutamide, abiraterone, and darolutamide. In conclusion, our results suggest that apalutamide and darolutamide share similar resistant mechanisms with enzalutamide and abiraterone. The AKR1C3/AR-V7 complex confers cross-resistance to second-generation androgen receptor-targeted therapies in advanced prostate cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。