Remote Ischemic Postconditioning Inhibits Hippocampal Neuronal Apoptosis and Mitophagy After Cardiopulmonary Resuscitation in Rats

远程缺血后处理抑制大鼠心肺复苏后海马神经元凋亡和线粒体自噬

阅读:4
作者:Biao Xie, XuHui Gao, Yang Huang, Yu Zhang, Shuibo Zhu

Background

Studies have shown that remote ischemic post-conditioning can improve brain damage caused by ischemia and hypoxia. However, the specific mechanism underlying this phenomenon is still unclear. The

Conclusion

Taken together, our results show that remote ischemic post-conditioning improves neural function after CPR by inhibiting P53 mitochondrial translocation-induced apoptosis and Parkin-mediated mitophagy.

Methods

Male Sprague-Dawley rats were used to establish an asphyxia cardiac arrest model by clamping the tracheal duct. First, the expression levels of P53, Cytochrome c (Cytc), and Parkin in the cytoplasm and mitochondria were observed at 3, 6, 24, and 72 h after the restoration of spontaneous circulation (ROSC). Then neurological deficit scores, hippocampal neuron apoptosis, mitochondrial P53 and Parkin, cytoplasmic Cytc, and neuron ultrastructure were evaluated 24 h after ROSC.

Results

P53 and Parkin can translocate from the cytoplasm to the mitochondria, promoting the translocation of cytoplasmic Cytc to mitochondria after CPR, reaching a peak at 24 h after the ROSC. The P53 inhibitor Pifithrin-μ reduced apoptosis induced by P53 mitochondrial translocation. Apoptosis was induced after cardiac arrest and attenuated by remote ischemic postconditioning via inhibiting P53 mitochondrial translocation and the release of Cytc to the cytoplasm. In addition, remote ischemic postconditioning could inhibit Parkin-mediated mitophagy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。