Histone chaperone HIRA dictate proliferation vs differentiation of chronic myeloid leukemia cells

组蛋白伴侣 HIRA 决定慢性粒细胞白血病细胞的增殖与分化

阅读:5
作者:Aditi Majumder, Arya T Dharan, Ishita Baral, Pallavi Chinnu Varghese, Ananda Mukherjee, Lakshmi Subhadradevi, Geetha Narayanan, Debasree Dutta

Abstract

Abnormal proliferation and disrupted differentiation of hematopoietic progenitors mark leukemia. Histone cell cycle regulator A (HIRA), a histone chaperone, regulates hemogenic to hematopoietic transition involved in normal hematopoiesis. But, its role remains unexplored in leukemia, a case of dysregulated hematopoiesis. Here, the Cancer Cell Line Encyclopedia database analysis showed enhanced HIRA mRNA expression in cells of hematopoietic and lymphoid origin with maximal expression in the chronic myeloid leukemia (CML) cell line, K562. This observation was further endorsed by the induced expression of HIRA in CML patient samples compared to healthy individuals and Acute Myeloid Leukemia patients. Downregulation of HIRA in K562 cells displayed cell cycle arrest, loss in proliferation, presence of polyploidy with significant increase in CD41+ population thereby limiting proliferation but inducing differentiation of leukemia cells to megakaryocyte fate. Induced megakaryocyte differentiation of mouse Hira-knockout hematopoietic progenitors in vivo further confirmed the in vitro findings in leukemia cells. Molecular analysis showed the involvement of MKL1/GATA2/H3.3 axis in dictating differentiation of CML cells to megakaryocytes. Thus, HIRA could be exploited for differentiation induction therapy in CML and in chronic pathological conditions involving low platelet counts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。