Two protein kinase C isoforms, δ and ε, regulate energy homeostasis in mitochondria by transmitting opposing signals to the pyruvate dehydrogenase complex

两种蛋白激酶 C 同工酶 δ 和 ε 通过向丙酮酸脱氢酶复合物传递相反的信号来调节线粒体中的能量稳态

阅读:5
作者:Jianli Gong, Beatrice Hoyos, Rebeca Acin-Perez, Valerie Vinogradov, Elena Shabrova, Feng Zhao, Michael Leitges, Donald Fischman, Giovanni Manfredi, Ulrich Hammerling

Abstract

Energy production in mitochondria is a multistep process that requires coordination of several subsystems. While reversible phosphorylation is emerging as the principal tool, it is still unclear how this signal network senses the workloads of processes as different as fuel procurement, catabolism in the Krebs cycle, and stepwise oxidation of reducing equivalents in the electron transfer chain. We previously proposed that mitochondria use oxidized cytochrome c in concert with retinol to activate protein kinase Cδ, thereby linking a prominent kinase network to the redox balance of the ETC. Here, we show that activation of PKCε in mitochondria also requires retinol as a cofactor, implying a redox-mechanism. Whereas activated PKCδ transmits a stimulatory signal to the pyruvate dehdyrogenase complex (PDHC), PKCε opposes this signal and inhibits the PDHC. Our results suggest that the balance between PKCδ and ε is of paramount importance not only for flux of fuel entering the Krebs cycle but for overall energy homeostasis. We observed that the synthetic retinoid fenretinide substituted for the retinol cofactor function but, on chronic use, distorted this signal balance, leading to predominance of PKCε over PKCδ. The suppression of the PDHC might explain the proapoptotic effect of fenretinide on tumor cells, as well as the diminished adiposity observed in experimental animals and humans. Furthermore, a disturbed balance between PKCδ and PKCε might underlie the injury inflicted on the ischemic myocardium during reperfusion. dehydrogenase complex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。