Significance
Chronic wounds are a common and serious health issue worldwide, and bioactive dressing materials are required to address this issue. SAP hydrogels have shown certain tissue repair potential, but their regenerative efficacy and underlying mechanism in chronic wound healing remain elusive. Herein, we report that SAP hydrogels create a native 3D microenvironment that can remarkably stimulate angiogenesis and ECM remodeling in diabetic wounds. Mechanistically, the SAP hydrogel promoted ECM proteins and GFs secretion in skin cells through the activation of the Rho/ROCK and TGF-ß/MEK/MAPK pathways. Additionally, SAP can be readily engineered with various bioactive motifs or therapeutic drugs/cells. This work highlights SAP hydrogels as a promising biomaterial platform for chronic wound healing and the regeneration of many other tissues.
Statement of significance
Chronic wounds are a common and serious health issue worldwide, and bioactive dressing materials are required to address this issue. SAP hydrogels have shown certain tissue repair potential, but their regenerative efficacy and underlying mechanism in chronic wound healing remain elusive. Herein, we report that SAP hydrogels create a native 3D microenvironment that can remarkably stimulate angiogenesis and ECM remodeling in diabetic wounds. Mechanistically, the SAP hydrogel promoted ECM proteins and GFs secretion in skin cells through the activation of the Rho/ROCK and TGF-ß/MEK/MAPK pathways. Additionally, SAP can be readily engineered with various bioactive motifs or therapeutic drugs/cells. This work highlights SAP hydrogels as a promising biomaterial platform for chronic wound healing and the regeneration of many other tissues.
