In silico optimization of a fragment-based hit yields biologically active, high-efficiency inhibitors for glutamate racemase

通过基于片段的计算机优化,可以得到具有生物活性的高效谷氨酸消旋酶抑制剂

阅读:7
作者:Katie L Whalen, Anthony C Chau, M Ashley Spies

Abstract

A novel lead compound for inhibition of the antibacterial drug target, glutamate racemase (GR), was optimized for both ligand efficiency and lipophilic efficiency. A previously developed hybrid molecular dynamics-docking and scoring scheme, FERM-SMD, was used to predict relative potencies of potential derivatives prior to chemical synthesis. This scheme was successful in distinguishing between high- and low-affinity binders with minimal experimental structural information, saving time and resources in the process. In vitro potency was increased approximately fourfold against GR from the model organism, B. subtilis. Lead derivatives show two- to fourfold increased antimicrobial potency over the parent scaffold. In addition, specificity toward B. subtilis over E. coli and S. aureus depends on the substituent added to the parent scaffold. Finally, insight was gained into the capacity for these compounds to reach the target enzyme in vivo using a bacterial cell wall lysis assay. The outcome of this study is a novel small-molecule inhibitor of GR with the following characteristics: Ki=2.5 μM, LE=0.45 kcal mol(-1) atom(-1), LiPE=6.0, MIC50=260 μg mL(-1) against B. subtilis, EC50, lysis=520 μg mL(-1) against B. subtilis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。