Bezafibrate mitigates cardiac injury against coronary microembolization by preventing activation of p38 MAPK/NF-κB signaling

贝扎纤维酸通过阻止 p38 MAPK/NF-κB 信号的激活减轻冠状动脉微栓塞造成的心脏损伤

阅读:5
作者:Ruijie Liu, Wenfang Wang, Wenfeng Li

Abstract

Coronary microembolization (CME)-induced inflammatory response and cardiomyocyte apoptosis are the main contributors to CME-associated myocardial dysfunction. Bezafibrate, a peroxisome proliferator-activated receptors (PPARs) agonist, has displayed various benefits in different types of diseases. However, it is unknown whether Bezafibrate possesses a protective effect in myocardial dysfunction against CME. In this study, we aimed to investigate the pharmacological function of Bezafibrate in CME-induced insults in myocardial injury and progressive cardiac dysfunction and explore the underlying mechanism. A CME model was established in rats, and cardiac function was detected. The levels of injury biomarkers in serum including CK-MB, AST, and LDH were determined using commercial kits, and pro-inflammatory mediators including TNF-α and IL-6 were detected using ELISA kits. Our results indicate that Bezafibrate improved cardiac function after CME induction. Bezafibrate reduced the release of myocardial injury indicators such as CK-MB, AST, and LDH in CME rats. We also found that Bezafibrate ameliorated oxidative stress by increasing the levels of the antioxidant GPx and the activity of SOD and reducing the levels of TBARS and the activity of NOX. Bezafibrate inhibited the expression of pro-inflammatory cytokines such as TNF-α and IL-6. Importantly, Bezafibrate was found to mitigate CME-induced myocardial apoptosis by increasing the expression of Bcl-2 and reducing the levels of Bax and cleaved caspase-3. Mechanistically, Bezafibrate could prevent the activation of p38 MAPK/NF-κB signaling. These findings suggest that Bezafibrate may be a candidate therapeutic agent for cardioprotection against CME in clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。