Bile acids differentially regulate longitudinal smooth muscle contractility in everted mouse ileum

胆汁酸对小鼠回肠外翻纵向平滑肌收缩力有差异性调节

阅读:5
作者:Peace N Dike, Krishnakant G Soni, Diana S Chang, Geoffrey A Preidis

Abstract

Bile acids regulate gastrointestinal motility by mechanisms that are poorly understood. Standard isolated tissue bath assays might not recapitulate in vivo physiology if contractile responses to certain bile acids require direct application to the intestinal mucosa. We sought to determine the feasibility of quantifying longitudinal smooth muscle contractile responses to bile acids from intact segments of everted mouse ileum. Ileum from adult female C57BL/6J mice was isolated, gently everted over a notched metal rod, and mounted in tissue baths. Individual bile acids and agonists of bile acid receptors were added to the baths, and longitudinal smooth muscle contractile responses were quantified by isometric force transduction. Ursodeoxycholic acid robustly increased contractile responses in a dose-dependent manner. Deoxycholic acid stimulated contractility at low doses but inhibited contractility at high doses. Chenodeoxycholic acid, glycocholic acid, and lithocholic acid did not alter contractility. The dose-dependent increase in contractility resulting from the application of ursodeoxycholic acid was recapitulated by INT-777, an agonist of the Takeda G protein-coupled receptor 5 (TGR5), and by cevimeline, a muscarinic acetylcholine receptor agonist. Agonists to the nuclear receptors farnesoid X receptor, glucocorticoid receptor, pregnane X receptor, vitamin D receptor, and to the plasma membrane epidermal growth factor receptor did not modify baseline contractile patterns. These results demonstrate that gentle eversion of intact mouse ileum facilitates the quantification of longitudinal smooth muscle contractile responses to individual bile acids. Prokinetic effects of ursodeoxycholic acid and low-dose deoxycholic acid are replicated by agonists to TGR5 and muscarinic acetylcholine receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。