More than magnetic isolation: Dynabeads as strong Raman reporters towards simultaneous capture and identification of targets

不仅仅是磁隔离:Dynabeads 作为强大的拉曼报告器,可同时捕获和识别目标

阅读:9
作者:Jongwan Lee, Marissa McDonald, Nikiwe Mhlanga, Jeon Woong Kang, Rohit Karnik, Loza F Tadesse

Abstract

Dynabeads are superparamagnetic particles used for immunomagnetic purification of cells and biomolecules. Post-capture, however, target identification relies on tedious culturing, fluorescence staining and/or target amplification. Raman spectroscopy presents a rapid detection alternative, but current implementations target cells themselves with weak Raman signals. We present antibody-coated Dynabeads as strong Raman reporter labels whose effect can be considered a Raman parallel of immunofluorescent probes. Recent developments in techniques for separating target-bound Dynabeads from unbound Dynabeads makes such an implementation feasible with high specificity. We deploy Dynabeads anti-Salmonella to bind and identify Salmonella enterica, a major foodborne pathogen. Dynabeads present major peaks around 1000 and 1600 cm-1 from aliphatic and aromatic C-C stretching of the polystyrene coating and near 1350 cm-1 from the ɣ-Fe2O3 and Fe3O4 core, confirmed with electron dispersive X-ray (EDX) imaging. Minor to no contributions are made from the surface antibodies themselves as confirmed by Raman analysis of surface-activated, antibody-free beads. Dynabeads' Raman signature can be measured in dry and liquid samples even at single shot ~30 × 30 μm area imaging using 0.5 s, 7 mW laser acquisition with single and clustered beads providing a 44- and 68-fold larger Raman intensity compared to signature from cells. Higher polystyrene and iron oxide content in clusters yields larger signal intensity and conjugation to bacteria strengthens clustering as a bacterium can bind to more than one bead as observed via transmission electron microscopy (TEM). Our findings shed light on the intrinsic Raman reporter nature of Dynabeads. When combined with emerging techniques for the separation of target-bound Dynabeads from unbound Dynabeads such as using centrifugation through a density media bi-layer, they have potential to demonstrate their dual function for target isolation and detection without tedious staining steps or unique plasmonic substrate engineering, advancing their applications in heterogeneous samples like food, water, and blood.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。