Ubiquitin-like modifier-activating enzyme 1 interacts with Zika virus NS5 and promotes viral replication in the infected cell

泛素样修饰活化酶 1 与寨卡病毒 NS5 相互作用并促进受感染细胞中的病毒复制

阅读:7
作者:Imanol Rodrigo, Laura Albentosa-González, María Jos Romero de Ávila, Maria Rosaria Bassi, Raquel Navarro Sempere, Pilar Clemente-Casares, Armando Arias

Abstract

Translation errors, impaired folding or environmental stressors (e.g. infection) can all lead to an increase in the presence of misfolded proteins. These activate cellular responses to their removal, including intracellular protein degradation activities. Protein ubiquitylation is involved in two major degradation pathways, the ubiquitin-proteasome system and selective autophagy. In humans, the ubiquitin-like modifier-activating enzyme 1 (UBA1) is the primary E1 enzyme in the ubiquitin conjugation cascade. Viruses have evolved to exploit protein degradation pathways to complete their infection cycles. Zika virus (ZIKV) is an emerging orthoflavivirus causing serious neurologic disorders in neonates (congenital microcephaly) and adults (Guillain-Barré syndrome). Non-structural protein 5 (NS5), the largest and most conserved protein in the orthoflaviviruses, catalyses the synthesis and capping of new viral genomes. In addition to viral RNA replication in the cytoplasm, ZIKV NS5 is translocated into the nucleus to interfere with host antiviral responses. Here, we demonstrate that ZIKV NS5 co-immunoprecipitates with cellular UBA1. Immunofluorescence assays suggest that this interaction takes place primarily in the nucleus of an infected cell, although colocalization of both proteins is also detected in the cytosol. RNA interference-mediated depletion of UBA1 leads to reduced virus titres in the infected cells, while transient overexpression of UBA1 favours faster replication kinetics, with higher virus titres and protein levels detected. Moreover, UBA1-targeting drugs cause significant drops in virus infectivity. These results support a proviral role for UBA1 during ZIKV infection and encourage the potential use of inhibitors against this enzyme or its NS5-interacting epitopes as potential therapeutic targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。