Long-term in situ ruminal degradation of biodegradable polymers in Holstein dairy cattle

荷斯坦奶牛瘤胃内可生物降解聚合物的长期原位降解

阅读:7
作者:Hailey Galyon, Samuel Vibostok, Jane Duncan, Gonzalo Ferreira, Abby Whittington, Rebecca Cockrum

Abstract

Using biodegradable materials such as polyhydroxyalkanoates (PHA) and poly(butylene succinate-co-adipate) (PBSA) to develop single-use agricultural plastics like bale netting may reduce the negative effects of plastic accumulation in the rumens of cattle. The objective of this research was to assess the long-term degradation of PHA, PBSA, and a PBSA:PHA blend (Blend) compared with a low-density polyethylene (LDPE) control. Polyhydroxyalkanoate, PBSA, Blend, and LDPE films were incubated in the rumens of 3 cannulated, nonlactating Holsteins for up to 150 d. In situ disappearance (ISD) and residue length were assessed after every incubation time. Data were analyzed with PROC MIXED in SAS and adjusted by Tukey's method to determine least squares differences between polymer treatments, incubation time, and their interaction. By 30 d, PHA achieved 100% degradation, with initiation occurring at 14 d indicated by ISD and a reduction in residue length. Poly(butylene succinate-co-adipate) and Blend did not achieve any significant ISD, but fragmentation of PBSA occurred at 60 d and fragmentation of Blend at just 1 d, likely due to abiotic hydrolysis. Low-density polyethylene achieved no ISD, and residue length did not change over incubation time. We propose that a PBSA:PHA blend is a valid alternative to polyethylene single-use agricultural plastic products based on its fragmentation within 1 d of incubation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。